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General Synthesis of Quarter-Wave
Impedance Transformers:
HENRY J. RIBLETT

Summary—This paper presents the general synthesis of a radio
frequency impedance transformer of n quarter-wave! steps, given an
“‘insertion loss function” of permissible form. This procedure paral-
lels that of Darlington for lumped constant filters by providing the
connection between Collin’s canonical form for the insertion loss
function and Richards’ demonstration that a reactance function may
always be realized as a cascade of equal length impedance trans-
formers terminated in either a short or open circuit. In particular, it
is shown that insertion loss functions of the form selected by Collin
are always realizable with positive characteristic impedances, and
that the synthesis procedure, for maximally flat and Tchebycheff
performance, involves the solution, at most, of quadratic equations.
In addition, this procedure permits the proof of Collin’s conjecture
that, for his insertion loss function, the resulting reflection co-
efficients are symmetrical. Finally, closed expressions are given for
the coefficients of the input impedance of a given n section trans-
former in terms of the n characteristic impedances and vice versa.

INTRODUCTION

OSSIBLY the most frequent problem encountered
Pin the design of distributed constant high fre-
quency transmission line circuits, is that depicted
in Fig. 1, where the several unknown characteristic
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Fig. 1—Schematic of # section transformer.

impedances are to be chosen so as to minimize the input
vswr over a given band of frequencies. The exact solu-
tion for a single step transformer is given by the well-
known relationship Z; = +/R. This result has found wide

* Manuscript received by the PGMTT May 18, 1956. Presented
before the IRE West Coast Convention, August 1955, San Francisco,
Calif. Since this paper was first submitted to the Proc. IRE for pos-
sible publication, the writer has learned of three other papers on the
filter aspects of this theory. Why the treatment of physical realizabil-
ity in each of these is incomplete, is discussed at the end of this
paper.

pT Microwave Development Labs., Wellesley, Mass.

! This discussion is in no way limited to quarter-wave trans-
formers, since the only assumption required is that the steps be of the
same length. This special case has been chosen, however, because the
use of quarter-wave transformers rules out the possibility of super
match, and because it is very likely that the optimum general mono-
tonic transformer has quarter-wave steps, since this has already been
demonstrated by the writer in the limiting case of narrow bandwidth
and small impedance transformation, with the assistance of a key
theorem proved for the purpose by J. E. Eaton.

practical application. Nevertheless, in the range of
microwave frequencies there are many problems which
require more elaborate transformer designs. It is only
recently that Collin? has given exact solutions for the
cases of two, three, and four transformer sections.
Previously the designer had available only approximate
solutions depending on the assumption that the indi-
vidual reflections are so small that multiple reflections
can be neglected.

It is on this basis that the well known solution, that
the logarithms of the ratios of the characteristic imped-
ances vary according to the binomial coefficients, may
be derived. Recently Cohn® has used the same approxi-
mation to obtain Tchebycheff performance in the band
of low vswr. The same idea was applied by Riblet? to
the equivalent directional coupler problem.

Although approximate solutions are easier to use and
may be adequate for most applications, they cannot, in
general, provide limits on optimum performance and do
not provide a satisfactory foundation for a deeper un-
derstanding of the problem. For example, this exact
synthesis procedure will prove certain general results
which were only conjectured by Collin and not even
suggested by those concerned with approximate solu-
tions.

Now Collin’s exact solution for cases n=2, 3, 4 is not
a true synthesis, but rather a solution by the method of
undetermined coefficients. He determines the insertion
loss function of a general transformer containing # un-
known characteristic impedances by equating the un-
known general insertion loss function to a special in-
sertion loss function having the desired performance.
The procedure leads, in general, to the simultaneous
solution of higher degree algebraic equations each con-
taining some or all of the unknowns. Disregarding the
numerical difficulties involved, the process leaves a
number of questions unanswered. Of these, the most
important is the question of physical realizability, since
Collin’s procedure gives no assurance that the charac-
teristic impedances obtained from the simultaneous
algebraic equations will be positive real numbers. With-
out this assurance, no claim for optimum performance
is justified.

2 R. E. Collin, “Theory and design of wide-band multisection
quarter-wave transformers,” Proc. IRE, vol. 43, pp. 179-185; Feb-
ruary, 1955.

¢ Seymour B. Cohn, “Optimum design of stepped transmission-
line transformers,” IRE TraANs., vol. MTT-3, pp. 16-21; April, 1955.

4 H. J. Riblet, “Super directivity with directional coupler ar-
rays,” Proc. IRE, vol. 40, pp. 994-995; August, 1952.
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Now the key to physical realizability is provided by a
theorem due to Richards,® which he has applied to the
realization of reactance functions as a cascade of im-
pedance transformers terminated in an open or short
circuit.? In order to extend this synthesis procedure to a
cascade of impedance transformers terminated in a re-
sistance, it will be necessary and sufficient to impose
an additional condition on the class of allowable imped-
ance functions, and it will be shown that this condition
is consistent with Collins’ canonical insertion loss func-
tion so that one may proceed from the given insertion
loss function to a step by step reconstruction of the net-
work as a cascade of impedance transformers terminated
in a resistance.

THE PROBLEM

Consider a section of uniform lossless transmission
line of characteristic impedance Z, phase constant
2w /N,, and length I. Then it is readily shown that the
voltage and current at the input to the line section are
linearly related to the voltage and current at the output
by the equations

cos 0z + §Z. sin 61,

I

Vg
1; = 7 sin vo -+ cos Big

with 8 =27//Ag. In vector notation this is written

()

1

The matrix appearing above will be called the imped-
ance matrix. The elements appearing in it are the gen-
eral circuit parameters;and its determinant, as a conse-
quence of reciprocity, is equal to unity. If the line sec-
tion is terminated in an impedance Zz, so that vg=Z 11y,
the input impedance, Z; is readily found from (1). The
impedance matrix of a cascade of line sections, as is
shown in Fig. 1, is obtained by multiplication of the
impedance matrices of the individual line sections. It is

readily shown by induction that the impedance matrix
of a cascade of % sections will have the form,

[cos 6 jsin 62,
!
— | jsing (°> (1)
[ ——cos 0| \ip
Z J

[

ag cos™ @ + az cos™ 2 + - - -
jsin 0(a, cos® 16 + ascos 24 - - - )
7 sin 6(cicos™ 84 ¢y cos” 04 - - 1)

¢y cos” B + co cos® 260 4 - - -

2

with leading coefficients aq, a1, co, ¢1 all real and greater
than zero. By a well-known theorem in the theory of
determinants, it is known that the determinant of (2) is

i P. 1. Richards, “A special class of functions with positive real
part in a half-plane,” Duke Math. J., vol. 14, pp. 777786, th. 6; Sep-
tember, 1947, See p. 779.

6 P. I. Richards, “Resistor-transmission-line circuits,” PRroc.
IRE, vol. 34, pp. 217-220; September, 1946. See p. 219.
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again unity. The input impedance of such a cascade, for
an arbitrary termination R is obtained as above by
multiplying elements of the first column by R and divid-
ing the sum of the resulting terms in the first row by the
sum of those in the second.

It will be convenient, numerically, to reverse the pro-
cedure by constructing the impedance matrix from a
known input impedance. This requires the identifica-
tion of R, and the restoration of any constant multipli-
cative factor which may have been cancelled out. Both
of these questions are resolved by making use of the fact
that the impedance matrix (2) must reduce to the unit
matrix for cos 8=1, :

The general theorems of analytic function theory are
made available to us bythe introduction of the frequency
variable p= —j cos 8/sin 6.7 Now as the guide wave-
length N, varies from zero to infinity, 4.e., over all posi-
tive real frequencies, p ranges over all negative and
positive values infinitely often. By theorems on analytic
continuation, any formal result which is proved for a
single determination of p will be valid for all the others.
Thus we may treat p as a frequency variable in the
familiar sense without any limitation on bandwidth.
With this in mind, we may write

cosf jsinbZ, P Z)
jsind = jsing| 1 . 3)
cos 0 - P
Ze ) Z,

Thus the impedance transformation for a single section
of line may be written,

A Ze
g oy PrtZe

T T Lec 4
ZL+ch ()

where Z;, is the impedance terminating the transformer
section. It is clear that the term j sin § appearing in (3)
cancels out in (4). The same is true for the input im-
pedance of a cascade of such transformers. The general
input impedance of a cascade of such transformer sec-
tions, terminated in R can readily be shown to be

=(Pn+a2epn—2+ e )R+(0‘1ej7"_1+0‘32P"_3+ e )

Z; &)

o'p Moy’ p s ) RE (P o e )

with the ¢'s all real and positive.

If we consider complex as well as imaginary values of
$ and write p =0 +1iw and consider values of Z; corre-
sponding to values of p for which ¢ 20, we find by simple
calculation that, whenever the real part of Z, is posi-
tive, so is the real part of Z;. In the terminology of
Brune,® Z; is a positive real function of p, whenever
Z 1, is positive real. We thus find, as a necessary condi-

7 This differs from the frequency variable chosen by Richards
and was selected so that p=0 for transformer sections one-quarter
wavelength long.

8 0. Brune, “Synthesis of a finite two-terminal network whose
driving point impedance is a prescribed function of frequency,” J. of
Math. and Phys., vol. 10, pp. 191-236; October, 1931.
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tion, that all impedance functions of p, of the form in
(5), realizable as a cascade of transformer sections
terminated in a resistance, must be positive real func-
tions of p. Furthermore, we observe that the determi-
nant of (3), neglecting § sin 8, is equal to p>*—1. Conse-
quently, the product of the two polynomials in (5) be-
ginning with p* minus the product of the remaining
polynomials is necessarily equal to R(p*—1)» This
theorem forms the basis for the synthesis procedure and
may be summarized as described below.

Synthesis Theorem

The necessary and sufficient conditions that a ra-
tional function of p with real coefficients, written in the
form

g mi(p) + m(p)
ma(p) + na(p)

with m; and ms odd or even and 7, and #n; even or odd,
be the input impedance of a cascade of #, equal-length
transmission line sections terminated in a resistance
are: 1) Z must be a positive real function of p, and 2)
my(P)me(p) —m (P)ne(p) = C(p2—1)". That these condi-
tions are necessary has already been proven; that they
are also sufficient is shown in an appendix.

Now it is well known that the insertion loss function
P giving the ratio of the power available from a gener-
ator of internal impedance R, to that dissipated in a
termination of impedance Ry, through a network having
the general circuit parameters 4, B, C, D is

| AR, + DR, + B + CR, R |2
B AR,R;

L (6)
We thus immediately infer from (2) that the insertion
loss function can always be expressed as an even real
polynomial in cos . This is Collin’s theorem.

If we write the power loss ratio as

Pr =1+ P,{cos?9) (7)

where P, is a real polynomial of nth degree, we may at-
tempt to select P, so that all of its zeros fall in the fre-
quency band of low vswr. This will give the maximum
number of frequencies of zero loss. To avoid values of
P less than 1, these roots must be double and we are
led to the form,

Pr=1+0.cosf) (8)

where Q, is even or odd in cos 8. Collin has chosen
Q.(cos 0)=kTn(cos 8/s) for Tchebycheff performance
and k cos® @ for maximally flat performance, but the
conclusions to follow will be true for any power loss
ratio of the form (8).

Our problem then is to reverse the procedure above.
We will start with a given power loss ratio of the form
(8) and show how one may proceed step by step to de-

Janvary

termine the characteristic impedances Z; which will
result in the required power loss ratio. The numerical
work is carried through most conveniently with the
impedance matrices of the form of (2). Proof of physical
realizability in terms of positive characteristic imped-
ances will require the use of the synthesis theorem.

Along the way, we shall prove Collin's conjecture
that Z;Z..1—s=R and derive closed expressions for the
o’s of (5) in terms of the Z,'s, and, conversely, express
the Z,'s explicitly in terms of the a’s and ¢’s of (2).

SOLUTION OF PROBLEM
Now

1

where |T'|? is the square of the magnitude of the input
reflection coefficient. Thus

R et
0,*(cos 0)

When cos? 0 is replaced in (9) by p2/p?—1, condition 1°
of the basic theorem, plus the requirement that I" have
the proper value at infinite frequency, yields a unique
determination for I'. Consider T=Z—1/Z-+1. Since Z
is to be pr, |T'| =1 for all values of p in the right half
plane. In particular, ' can have no poles in the right
half plane. Consider the zeros of 1+Q,2(cos ). We
need be concerned only with the # zeros of the expres-
sion as a function of cos? 0. Now p2=cos? 6/(cos? § —1).
Thus to each cos? 0 root there exist two p roots differing
in argument by 180° Of these, one must fall in the left
half plane except for the possibility that the two roots
are imaginary. This is contrary to our choice of the
power loss ratio, because it implies actual frequencies at
which the power loss ratio is zero. Thus we select the
n p-roots which fall in the left half plane, and use them
to construct the denominator of I'. When p is replaced
by —7 cos 8/sin 6, it will be found that
aQy,{cos 6)

= - - (10)
cos®@ 4 - -+ + jsinf(cos 194 - - . )

(9)

The value of the complex constant « is uniquely deter-
mined from the requirement that

R—1
T = for cos 8 = 1.
R+1

If I' is written in p form the same determination can be
made by putting = «. Having constructed T, the in-
put impedance Z is immediately determined from the

® For a discussion of the consequences of this assumption, the
reader is referred to E. A, Guillemin, “The Mathematics of Circuit
Analysis,” John Wiley and Sons, Inc., New York, N. Y., 1949. See
ch. 6, arts. 26-27.
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equation
1+7T
7= .

-7 (11)

We must show that our construction of I', to avoid poles
in the right half plane, yields a function which satisfies
the pr condition of the theorem. Now, since I' is analytic
in the right half plane, according to the maximum
modulus theorem, the maximum absolute value which
it can achieve in the right half plane is attained on the
imaginary axis. By construction, however, its value here
is given by (9) and thus |T'| £1 for all values of p in the
right half plane. From (1) the real part of Z is readily
found to be (1— [P| 2)] 1—I‘| 2 and thus Z is pr.

It remains to show that the Z so constructed must
satisfy condition 2 of the synthesis theorem. If the cos? §
in (9) is replaced by p?/p2—1, II‘

Rp?)
(#* = D" + Ralp)

Now the Z obtained from (10) may be written in the
form

2 can be written

T = (12)

P mi(p) + ni(p) (13)
ma(p) + na(p)
where m, and m. are even or odd and #; and #; are odd or
even. Since Z is positive real, it is well known!? that all
the coefficients appearing in Z are of the same sign, and
the degree of the numerator and denominator differ at
most by unity. From (13), T becomes

o my — ma + (111 — 119)
my + may - (1 + ne)

Now since p= —7 cos 8/sin 6, |I‘

(14)

2is
(m1 — le)g - (ﬂl d 112)2
(my + m2)® — (11 + n9)?

The difference between the denominator and numerator
of this fraction is 4m; (p)ms(p) — 4n.(p)ne(p). Comparing
this with (12) we see that

ma(pyma(p) — ni(p)na(p) = Cp* — Hin,

Thus condition 2 is satisfied by our construction. It is
also readily argued that the numerator and denominator
of (13) must be of the same degree.

Once Z is known, the first unknown characteristic
impedance is readily determined by subjecting Z to the
transformation inverse to (4) with Z, selected to have
the value of Z for p=1, so that the degree of the result-
ing impedance function is one less than the degree of Z.
This procedure can then be repeated, and the synthesis
theorem assures us that all of the characteristic im-
pedances so found are real, positive numbers,

|p|2:

10 Ihid., pp. 396-411.
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For the purpose of numerical computation, it appears
to be a little more convenient to use the impedance
matrix in the form of (2) which is obtained by substi-
tuting (10) in (11). The load resistance R and proper
multiplicative constant for the numerator and denomi-
nator are obtained from the condition that (2) must re-
duce to the unit matrix for cos 6 =1. If we multiply (2),
either on the left or the right, by the inverse of (1)

cos @ —7 sin 07,
—jsin@ cos @
Ze

the characteristic impedance, of either the first or last
sections of the transformer may be determined from the
condition that the resulting matrix must have elements
whose degrees in cos 8 are reduced by one.

SpECIAL RESULTS

We are now in a position to prove Collin’s conjecture
that, for power loss ratios of the form

Pr =14 Q,%cos 8)

the impedances Z; will satisfy the relationship
Z:Z,1.;=R. Since the numerator of II‘[ 2 is a perfect
square, involving only cos 6, [see (9) ], I' has the form of
(10). Since I'" is real for cos 0 =1, o must be real. Conse-
quently the input impedance has the form
4+ 7sinéB
D+ jsinoC
with C=B. Thus the impedance matrix has the form
A/R [ sin 6B
(. . ! ) (13)
Jsin 6B/R D

The important point is that the matrix is symmetric,
except for the factor R, and this is the necessary and
sufficient condition for the result. Consider

[ cos@ —7sin 62, A/R jsin 6B
sin 0 o
-] — cos @ jsin9B/R D
Zy
cos f —JjsinbZ,
_sin @ (16)
—J cos 8
Z

If one considers the term in the first row and column of
the left hand product, Z; must be chosen so that the co-
efficient of the highest power of cos 6 vanishes. Thus Z;
is equal to the ratio of the highest coefficient of 4 divided
by the leading coefhcient in B. Thus Z;=R/Z,, if one
applies the same argument to the right hand product.
If one evaluates the diagonal elements in the triple
product, it is found that they have the same type of
symmetry as is shown in (15). Thus the same arguments
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may be repeated with the general consequence that
ZZnp—i=R.

It should be observed that, if one assumes symmetry
about the other diagonal so that 4 =D, one is led to
insertion loss functions of the form

Py, =1+ sin? 60, 1%(cos 6)

and one has end-for-end symmetry of the characteristic
impedances, and the other properties of a band-pass
filter.

We conclude the general discussion of the problem by
exhibiting the bi-rational relationships between the co-
efficients in the impedance function, and the character-
istic impedances. Consider the elementary symmetric
functions o, of the % characteristic impedances
Zy, + + +, Zy, defined by the sums

O'¢=ZZJ'"'ZL~

where summation is taken over all combinations of the
# characteristic impedances taken 7 at a time. It is
further assumed that the Z;'s in each term are ordered
so that the index of any Z; in a term is less than the
indices of all the Z;’s which follow it, in same term. This
is so-called lexicographical ordering. Then it may be
shown by induction that the ¢’s of (5) may be con-
structed from the ¢;'s as follows:

o is constructed from o; by replacing alternate Z,’s,
starting with the second, in each term by the re-
ciprocal 1/Z;.

g% is constructed as above except one starts with the
first Z;in each term.

For example for =3, 0.°=Z3/Z1+ 73/ Zs-+Z:/Z1 and
0'3e = Z1Z3/Z2

For the reverse of this procedure, it is convenient to
assume that the input impedance is known in the form
of the impedance matrix (2). One will find, in general,
that

Zrp1r = arr1/Bryt (17)
where
1 0 0 1
ao - 01 0 0 0
as €1 — C3 Qo —¢ -+ 0
a2 a—cCg 0
_ Aok Cokg1 — C2k—1 0
T 0 1 0
Qg — 0 0
as 1 —C3 @y — ¢y v
Q2k C2p+1 — C2i—1 -—1F

January

and

1 0 0 1

C1 — 0 0

C3 - Q2 c1 — Qy "

Cop41 - Qo
B =1y 0 1 0

C1 - 0 0

C3 — Qs C1 — Qy °

Cakt1 — Qs - —1

These determinations are obtained by extending the
idea shown in the left hand product of (16). The first im-
pedances Zi, - - -, Zp are assumed known, and the
product of the corresponding inverse impedance trans-
formations is written in general form with the co-
efficients of the elements in the first row given the
general designations, Xj, - + -, X;. When this inverse
matrix of degree k in cos 6 is multiplied by the given
impedance matrix, a matrix of degree k+n in cos 8
results. All the coefficients of cos 8 in the first row and
column of this matrix must be zero, except the co-
efficient, a4, of cos®* 0, and the coefficients of lower
degree terms. If we treat ey as an unknown, we find
that we have exactly k-1 linear equations for the de-
termination of 241 unknowns, X1, - - -, X and azq.
The use of Cramer’s rule yields oy in determinant
form. If the same procedure is applied to Y3, - - -, V3,
the coefficients in the 2nd row of the inverse determi-
nant, then 841, the highest nonzero coefficient of the
lower left hand corner element of the product matrix,
can also be determined. The value of Z;,; follows im-
mediately.

NUMERICAL EXAMPLE

As an illustrative example, consider the problem of
designing a transformer from characteristic impedance
unity to characteristic impedance 0.440 in waveguide
having a cutoff wavelength of 5.680 inches, subject to
the requirement that vswr =1.05 from 2600-3600 mc.

It is readily determined that this requires that P
shall have 3 roots in the pass band, and we select an
insertion loss function of the form

cos 6§
PL=1+k2T32|: ]

N

with 6 =2xl/A,. If I is to be chosen so that cos §=0 at
the centerZof the band and of equal magnitude at the
ends of the band

_ )‘01 )‘92
2()\91 + )\02>
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where ©,; and N are the extreme guide wavelengths. s is
chosen by the requirement that the argument of
Ts(cos 8/s) shall be unity at the ends of the band, and
is found to be numerically equal to 0.464. % is determined
by the requirement that, at infinite {requency, the
transformer shrinks to zero length and Py, is that result-
ing from the terminating impedance R. In general

(R+1)?

=1 kT34
4R + 3(/8)

and in our example £2=1.5777X10~*. Now

Pr—1
cos §
k2T32< >
s

R
Py
B 0.253 cos® 6 — 0.0817 cos*§ 4 0.00659 cos? 6 + 1

If, in the denominator, we make the substitution
p= —jcos 8/sin 8, its p roots are found to be

b1 = + (1.034 + j0.351)
pe = X 0.772
by = + (1.034 — j0.351).
If we select those roots lying in the left half plane, the

denominator of T, except for a multiplicative constant,
is p51+2.841p2+2.790p-+0.921. We may then write

I

B akTs(cosh/s)(p? — 1)3/2
T pS -+ 2.841p% 4 2.790p + 0.921

The multiplicative constant « is chosen by the re-
quirement that '=R—1/R—1 when cos #=1 and
p =, Then I' may be written
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except for a multiplicative factor in each term. Now Ry
and the multiplicative factor are uniquely determined
by the condition that the impedance matrix must reduce
to the unit matrix for cos 6=1. Thus the impedance
matrix becomes

[cos 6(5.442 cos? 0 —4.442) 7 sin 6(2.710 cos? 0——0.664):,
7 sin 6(6.154 cos? —1.507) cos 0(3.064 cos? #—2.064) )

If this is multiplied on the left by the inverse of (1)

((cosd  —7sin0Z;

—4sin @

i cos @
Zy

4 equivalent conditions result that the powers of cos
occurring in the result will be at most of second degree.
For the coefficient of cos* 8 appearing in the upper left
hand element, one obtains the coefficient 5.442 —6.154Z,
so that Z;=0.884. When this transformer element is
removed, the impedance matrix for the balance of the
transformer is

(2.34 cos®f — 1.335  jsin0(1.17 cos 8) >
4sin 6(3.52 cos 6)  1.74cos?f — 0.749/

The next step yields Z;=0.668 and a remaining trans-
former having an impedance matrix

<O.998 cos 0

—0.4987 sin 0>
2.017 sin 0

1.02 cos @
corresponding to an impedance of 0.495. The last step

will result in the unit matrix and provides a check on
the accuracy of the numerical calculations.

0.921 cos 6(0.503 cos® & — 0.0812)

cos 8(-—3.790 cos? 6 + 2.790) — j sin 6(3.762 cos® 8 4 0.921)

and the input impedance is

cos 8(—3.327 cos? § -+ 2.716) -+ 7 sin 6(—3.762 cos? 9 -+ 0.921)

cos 0(—4.254 cos? § + 2.865) + 7 sin 6(—3.762 cos? 6 -+ 0.921)

The fact that the imaginary parts of the numerator and
denominator of Z are equal assures us of a transformer
having symmetrical reflection coefficients as previously
proven. The impedance matrix giving rise to this input
impedance can be written

cos 8 (—3.327 cos? 8 + 2.716) )
R, j sin 8(—3.762 cos? 6 + 0.921)

jsin® (—3.762 cos? § 4 0.921)

"Ry cos 6(—4.254 cos? 6 + 2.865)

CoNCLUSION

A general solution of the synthesis of equal length
impedance transformers with given insertion loss func-
tion has been obtained. It shows that optimum Tcheby-
cheff characteristics can be physically realized and are
true optimums for quarter wavelength transformers.
Collin’s conjecture regarding the symmetry of the
optimum transformer is proved and closed expressions
are given for the bi-rational transformations relating
the characteristic impedances to the coefficients oc-
curring in the impedance functions. Finally it is shown
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that the determination of the characteristic impedances
for Tchebycheff or maximally flat performance involves
at most the solution of quadratic equations.

APPENDIX

We wish to prove that a rational function of p with
real coefficients, of degree #, in numerator and denomi-
nator written

P ma(p) + na(p)

= (20)
ms(p) + na(p)

with m; and m1, either even or odd and then #; and #, odd
or even is the impedance function of a cascade of equal-
length impedance transformers terminated in a re-
sistance if 1) Z is positive real; and 2)

mi(pyma(p) — ni(p)na(p) = C(p* — ™.

This will have been shown, if we can demonstrate the
existence of a positive real number Z, such that the
transformation, inverse to (4),

p7 — Z,

Z=Z,— (21)

when applied to (20), results in a rational function of
one lower degree, with real coefficients for which con-
ditions (1) and (2) are again satisfied. Repetition of this
procedure must result in an impedance function which
is a positive constant; and, at this point, the synthesis
is complete.

Now the general possibility of this reduction is the
result of the theorem of Richards previously referred to,
with the addition of condition (2). What is required by
Richards is that Z(—1)=—Z(1). For the reactance
functions considered by Richards, this is almost trivially
true at each stage of the synthesis, and is readily de-
rived from condition (2) for the case of resistive termina-
tions as follows

mi(1) + n,(1)

’WLz(l) + 722(1)

but from 2, my(1)ms(1) =n,(1)n:(1). Therefore
mi(—1)  m (1) _ 11(1) B ni(—1) B

B B T om(—1)

Z(1) =

112(—1) 19(1) B ma(1) B
since #;(p)/m;(p) is certainly odd. Thus
Z() =r = — Z(—1).

We may now prove, after Richards, that, if we select
Z, to have the value of Z at p=1, Z’ will be of one less
degree in p and be positive real. In the first place, the
numerator of Z’ vanishes for #=1 and hence contains
p=1 as a factor. It also vanishes for p= —1, since
Z(N=—Z(—1), and so contains a factor p2—1. The
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same statements are true for the denominator of Z’, and
thus it too contains a factor p?—1 which may be can-
celled out with the same factor in the numerator. Thus
Z' is a rational function of p whose numerator and de-
nominator are of exactly one less degree than the
numerator and denominator of Z.

It is pr. Consider the function (Z'—1)/(Z'+1).
Clearly a necessary and sufficient condition that Z’ be
pris that | (Z—"1)/(Z'+1)| <1 for the Re (p)20. This
is apparent on consideration of the magnitude of the
vectors Z’ —1 and Z'41. Now

Z/Z() =1 Z—Z(1) p+1
Z/Z10) +1 Z4+2z(1) p—1

(22)

In the first place, the function on the left is analytic in
the right half plane, since Z is known to be p7 so that
the only zero of the denominator of (22) must occur at
p=1 where it is cancelled out by a corresponding zero
in Z—Z(1). Now it is well known (maximum modulus
theorem again) that an analytic function assumes the
maximum value for its absolute values on the boundary
of its region of analyticity. Thus the absolute value of
(22) in the right half plane is less than or equal to the
minimum absolute value assumed by it on the imaginary
axis. Here | (p+1)/(p — 1)’ =1. Moreover since Z is as-
sumed pr, | [Z—Z(1)]/[Z+Z(1)]] £1. Thus
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’Z’/Z(l) -1 ‘

}Z —Z()| p+ 1}
7'/Z(1) + 1

Z+z)| lp—1

on the imaginary and hence everywhere in the right half
plane. Accordingly Z’/Z(1) is pr, and then so is Z’ since
Z(1) is positive.

The proof of the synthesis theorem will be completed
when we argue that for Z’ written in the form

(md'(p) + nd'(p))/ (' (p) + 1’ (p)),
mi/(pyma’(p) — m/(p)na(p) = C(p? — 1)L,

Consideration of the inverse transformation (22) shows
that the corresponding impedance matrix has the de-
terminant, p2—1, just as the transformation (4). Before
any cancellation then

m(p)me' (P} — m'(p)us(p) = C(p? — 1)n+L

When Z,—Z(1), Richards’ theorem shows that a term
p?—1 factors from both numerator and denominator.
Actually p?—1 must factor from both even and odd
parts of numerator and denominator, and when this is
done the result follows.

DiscussioN

H. Seidel in a doctoral dissertation dated May, 1954
has shown that an exact synthesis can be carried
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through, starting from an insertion loss function of
allowed form. His procedure parallels that used in our
numerical example. He does not introduce a complex
variable equivalent to p, however, and thus does not
have Richards’ theorem available for proving physical
realizability. In particular, he makes no point of the
second condition for the physical realizability of an im-
pedance function. Ozaki and Ishii,!? clearly state this
second condition, but they do not parallel Darlington

U H. Ozaki and J. Ishii, “Synthesis of transmission-line net-
works and the design of uhf filters,” IRE TraANs., vol. CT-2, p. 325~
336; December, 1955,
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by starting from a given insertion loss function. E.M.T,
Jones in the 1956 IRE CoNVENTION RECORD uses a com-
plex variable, but he makes no mention of the second
condition for physical realizability, and appears, in his
proof of physical realizability, to have appealed to
Richards for a theorem which Richards did not prove.
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An Analysis of the Diode Mixer Consisting of Nonlinear
Capacitance and Conductance and Ohmic Spreading

Resistance*
ALAN C. MACPHERSONTY

Summary—A method is presented for calculating the mixer ad-
mittance matrix ¥’ which results when an ohmic impedance is con-~
nected in series with a diode mixer described by an admittance
matrix V. There are no restrictions on the frequency dependence of
the ohmic impedance nor on the number of harmonic sidebands con-
sidered. The equations are worked out in detail for the ‘‘low Q”
case in which signal, image, and intermediate frequencies are con-
sidered, and it is shown that ¥” in this case is ‘‘nearly low Q.” As a
result of this analysis the usual criterion for good high-frequency
mixing, i.e., that the product of the spreading resistance and the
barrier capacitance be small compared with unity, is criticized and a
new figure of merit is proposed.

Explicit formulas have been derived for calculating the elements
of ¥’ when Y represents the parallel combination of a nonlinear con-
ductance and capacitance. In general, these formulas are cumber-
some, bat three special cases have been considered in detail.

Case 1: Zero spreading resistance and equal admittances con-
nected to image and signal terminals. Results: a) The conversion
gain is independent of the contact area. b) Regions of negative IF
conductance are always associated with arbitrarily high gain.

Case 2: High-frequency, small spreading resistance, image
shorted across nomlinear conductance and capacitance. Results:
a) The conversion loss and the IF admittance can be given by closed
equations. b) The IF conductance can be negative. ¢) Regions of
negative IF conductance are bounded by regions of arbitrarily small
IF conductance. d) The conversion loss can decrease with increasing
frequency. e) Low conversion loss is accompanied by narrow band-
width.

Case 3: The spreading resistance is zero and the image is shorted.
Results: a) Above a certain frequency negative IF conductance is
obtained and arbitrarily low conversion loss is possible. b) The
situation is quite similar to that of Case 1.

* Manuscript received by the PGMTT, Mayv 18, 1956.
1 Naval Research Lab., Washington, D C

Measurements of mixer performance at the ‘‘available terminals”
are discussed and the failure of the ‘‘phenomenological theory of
mixing” as a basis for making such measurements is emphasized.

INTRODUCTION

HIS PAPER will be concerned principally with
Tthe mixing properties of the circuit of Fig. 1 (next

page), where arrows indicate that g and C are func-
tions of the voltage across them. Frequent reference will
be made to Torrey and Whitmer! and whenever possible
the notation used therein will be followed here.

The circuit of Fig. 1 has been widely used, qualita-
tively at least, as an equivalent circuit for point-
contact crystal diodes,? particularly for microwave work
in which the capacitor is of importance. The part of the
crystal diode that Fig. 1 is supposed to represent is
shown in Fig. 2. The terminals are at the dotted lines
AA" and BB’. The distance from the line A4’ to the
surface is a small fraction of the shortest wavelength in-
volved, while the line BB’ is located so as to include
nearly all of the spreading resistance. It can be shown
that the latter requirement will be fulfilled if BB’ is
several times the contact diameter away from the con-
tact region.

The validity of the circuit of Fig. 1 as a representation
of Fig. 2 is open to question. It has been verified in the

1 H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1948.
2 Jbid., p. 24.



