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General Synthesis of Quarter~Wave

Impedance T ‘

HENRY J.

ranslormers*

RIBLET~

Summary—This paper presents the general synthesis of a radio
frequency impedance transformer of n quart er-wave~ steps, given an
{(insertion l.ss function~~ of permissible form. ‘This procedure Paral-

lels that of Darlington for lumped constant filters by providing the
connection between Collin% canonical form for the insertion loss
function and Richards! demonstration that a reactance function may
always be realized as a cascade of equal length impedance trans-
formers terminated in either a short or open circuit. In particular, it

is shown that insertion loss functions of the form selected by Collin

are always realizable with positive characteristic impedances, and

that the synthesis procedure, for maximally flat and Tchebycheff

performance, involves the solution, at most, of quadratic equations.
In addition, thk procedure permits the proof of Collin’s conjecture

that, for his insertion loss function, the resulting reflection co-
efficients are symmetrical. Finally, closed expressions are given for

the coefficients of the input impedance of a given n section trans-
former in terms of the n characteristic impedances and vice versa.

INTRODUCTION

P

0SS1 BLY the most frequent problem encountered

‘ in the design of distributed constant high fre-

quency transmission line circuits, is that depicted

in Fig. 1, where the several unknown characteristic

L- *-J

Fig. l—Schematic of n section transformer.

impedances are to be chosen so as to minimize the input

vswr over a given band of frequencies. The exact solu-

tion for a single step transformer is given by the well-

known relationship ZI = @. This result has found wide

* Manuscript received by the PGMTT May 18, 1956. Presented
before the IRE West Coast Convention, August 1955, San Francisco,
Cal if. Since this paper was first submitted to the PROC. IRE for pos-
sible publication, the writer has learned of three other papers on the
filter aspects of this theory. Why the treatment of physical realizabil-
ity in each of these is incomplete, is discussed at the end of this
paper.

t Microwave Development Labs,, Wellesley, Mass.
1 This discussion is in no way limited to quarter-wave trans-

formers, since the only assumption required is that the steps be of the
same length. This special case has been chosen, however, because the
use of quarter-wave transformers rules out the possibility of super
match, and because it is very likely that the optimum general mono-
tonic transformer has quarter-wave steps, since this has already been
demonstrated by the writer in the limiting case of narrow bandwidth
and small impedance transformation, with the assistance of a key
theorem proved for the purpose by J. E. Eaton.

practical application. Nevertheless, in the range of

microwave frequencies there are many problems which

require more elaborate transformer designs. It is only

recently that Collin2 has given exact solutions for the

cases of two, three, and four transformer sections.

Previously the designer had available only approximate

solutions depending on the assumption that the indi-

vidual reflections are so small that multiple reflections

can be neglected.

It is on this basis that the well known solution, that

the logarithms of the ratios of the characteristic imped-

ances vary according to the binomial coefficients, may

be derived. Recently Cohns has used the same approxi-

mation to obtain Tchebycheff performance in the band

of low vswr. The same idea was applied by Ribletl to

the equivalent directional coupler problem.

Although approximate solutions are easier to use and

may be adequate for most applications, they cannot, in

general, provide limits on optimum performance and do

not provide a satisfactory foundation for a deeper un-

derstanding of the problem. For example, this exact

synthesis procedure will prove certain general results

which were only conjectured by Collin and not even

suggested by those concerned with approximate solu-

tions.

Now Collin’s exact solution for cases n =2, 3, 4 is not

a true synthesis, but rather a solution by the method of

undetermined coefficients. He determines the insertion

loss function of a general transformer containing n un-

known characteristic impedances by equating the un-

known general insertion loss function to a special in-

sertion loss function having the desired performance.

The procedure leads, in general, to the simultaneous

solution of higher degree algebraic equations each con-

taining some or all of the unknowns. Disregarding the

numerical difficulties involved, the process leaves a

number of questions unanswered. Of these, the most

important is the question of physical realizability, since

Collin’s procedure gives no assurance that the charac-

teristic impedances obtained from the simultaneous

algebraic equations will be positive real numbers. With-

out this assurance, no claim for optimum performance

is justified.

2 R. E. Collin, “Theory and design of wide-band multisection
auarter-wave transformers. ” PROC. IRE, vol. 43, pp. 179-185; Feb-
r“uary, 1955.

3 Seymour B. Cohn, “Optimum design of stepped transmission-
line transformers, ” IRE TRANS., vol. MTT-3, pp. 16-21; April, 1955.

4 H. J. Riblet, “Super directivity with directional coupler ar-
rays,” PROC. IRE, vol. 40, pp. 994-99S; August, 1952.
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Now the key to physical realizability is provided by a

theorem due to Richards $ which he has applied to the

realization of reactance functions as a cascade of im-

pedance transformers terminated in an open or short

circuit.d In order to extend this synthesis procedure to a

cascade of impedance transformers terminated in a re-

sistance, it will be necessary and sufficient to impose

an additional condition on the class of allowable imped-

ance functions, and it will be shown that this condition

is consistent with Collins’ canonical insertion 10SS func-

tion so that one may proceed from the given insertion

loss function to a step by step reconstruction of the net-

work as a cascade of impedance transformers terminated

in a resistance.

THE PROBLEM

Consider a section of uniform lossless transmission

line of characteristic impedance ZC, phase constant

27r/h., and length 1. Then it is readily shown that the

voltage and current at the input to the line section are

linearly related to the voltage and current

by the equations

vi = cos Ovo + jZC sin 6i0

& = j sin V. + cos 9io

with (3 = 2~l)Ag. In vector notation this is

(cos 6 ~sin 02.)

()vi
= I jsinfi

,()

Vo

ii I –V—cosel’ io “

at the output

written

(1)

( ~. )

The matrix appearing above will be called the imped-

ance matrix. The elements appearing in it are the gen-

eral circuit parameters; and its determinant, as a conse-

quence of reciprocity, is equal to unity. If the line sec-

tion is terminated in an impedance Z.L so that ZJO= Zr,-iO,

the input impedance, Zi is readily found from (1). The

impedance matrix of a cascade of line sections, as is

shown in Fig. 1, is obtained by multiplication of the

impedance matrices of the individual line sections. It is

readily shown by induction that the impedance matrix

of a cascade of n sections will have the form,

ao cos~ $ + a2 cos%–% + . . *

j sin O(al cos n—l@+a3cOSn—Sf)+. ..)
(2)

j sin 0(61 cos”–l O + c3 cos’–3 O + . 0 . )

Co COS” e + C2COS”–2e + . . .\

with leading coefficients ao, al, cO, c1 all real and greater

than zero. Bv a well-known theorem in the theorv of

determinants, it is known that the determinant of (2) is

5 P. 1. Richards, “A special class of functions with positive real
part in a half -plane,” Duke Math. J., vol. 14, pp. 777--786, th. 6; Sep-
tember, 1947. See p. 779.

b P. I. Richards, “Resistor-transmission-line circuits, ” PROC.
IRE, vol. 34, pp. 217–220; September, 1946. See p. 219.

again unity. The input impedance of such a cascade, for

an arbitrary termination R is obtained as above by

multiplying elements of the first column by R and divid-

ing the sum of the resulting terms in the first row b!; the

sum of those in the second.

It will be convenient, numerically, to reverse the pro-

cedure by constructing the impedance matrix from a

known input impedance. This requires the identi fica-

tion of R, and the restoration of any constant mul tipli-

cative factor which may have been cancelled out. 130th

of these questions are resolved by making use of the fact

that the impedance matrix (2) must reduce to the unit

matrix for cos O = 1.

The general theorems of analytic function theory are

made available to us bythe introduction of the frequency

variable j = —j cos O/sin 6.7 Now as the guide wave-

length & varies from zero to infinity, Le., over all lposi-

tive real frequencies, p ranges over all negative and

positive values infinitely often. By theorems on analytic

continuation, any formal result which is proved for a

single determination of j will be valid for alll the others.

Thus we may treat fi as a frequency variable in the

familiar sense without any limitation

With this in mind, we may write

on bandwidth.

Thus the impedance transformation for

of line may be written,

z =TfzL+zc
‘t

“’ZL + pzc

2.

(3)
P ‘

a single section

(4)

where ZL is the impedance terminating the transformer

section. It is clear that the term j sin 6 appearing h (3)

cancels out in (4). The same is true for the input. im-

pedance of a cascade of such transformers. The general

input impedance of a cascade of such transformer sec-

tions, terminated in R can readily be shown to be

z = (P”+u2epn-2+ . . . )R+ (CT,”p-+u,y-’+ . . . ~ (5)
.—

i

Ulop”–l+usop”–s+ . . . )R+ (p”+ u2’y-2-+ . . . )

with the u’s all real and positive.

If we consider complex as well as imaginary values of

$ and write @=o-+iw and consider values of Z; corre-

sponding to values of P for which a >0, we find by simple

calculation that, whenever the real part: of ZL is posi-

tive, so is the real part of Zi. In the terminology of

Brune,8 Zi is a positive real function of p, whenever

ZL is positive real. We thus find, as a necessary condi-

7 This differs from the frea uencv variable chosen bv Richards
and was selected so that @= O ‘for transformer sections &e-quarter
wavse&&.ul;:g.

“Synthesis of a finite two-te~minal network whose
driving point ihpedance is a prescribed function of frequency, ” J. of
Math. and Phys., vol. 10, pp. 191-236; October, 1931.
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tion, that all impedance functions of P, of the form in

(5), realizable as a cascade of transformer sections

tel minated in a resistance, must be positive real func-

tions of p. Furthermore, we observe that the determi-

nant of (3), neglecting j sin 0, is equal to p~ — 1. Conse-

quently, the product of the two polynomials in (5) be-

ginning with @n minus the product of the remaining

polynomials is necessarily equal to R(pz – l)’. This

theorem forms the basis for the synthesis procedure and

may be summarized as described below.

Synthesis Theo?em

The necessary and sufficient conditions that a ra-

tional function of P with real coefficients, written in the

form

~ = ml(p) + nl(j)

d)) + di’)

with ml and mz odd or even and nl and nz even or odd,

be the input impedance of a cascade of n, equal-length

transmission line sections terminated in a resistance

are: 1) Z must be a positive real function of @, and 2)

ml(~)m~(fl) —fil(p)nz(p) = C(P2 — 1)”. That these condi-

tions are necessary has already been proven; that they

are also sufficient is shown in an appendix.

Now it is well known that the insertion loss function

P~ giving the ratio of the power available from a gener-

ator of internal impedance Rg to that dissipated in a

termination of impedance RL, through a network having

the general circuit parameters A, B, C, D is

IAR. +DR. + B+cR,RL12 .
PI, = (6)

4RQRL

We thus immediately infer from (2) that the insertion

loss function can always be expressed as an even real

polynomial in cos 0. This is Collin’s theorem.

If we write the power loss ratio as

P. = 1 + Pn(cos2 f?) (7)

where P. is a real polynomial of nth degree, we may at-

tempt to select P. so that all of its zeros fall in the fre-

quency band of low vswr. This will give the maximum

number of frequencies of zero loss. To avoid values of

PL less than 1, these roots must be double and we are

led to the form,

PL = 1 + Q.’(COS 0) (8)

where Q. is even or odd in cos 0. Colliu has chosen

Qn(cos 6)= kTn(cos 0/s) for Tchebycheff performance

and h Cosm 6’ for maximally flat performance, but the

conclusions to follow will be true for any power loss

ratio of the form (8).

Our problem then is to reverse the procedure above.

We will start with a given power loss ratio of the form

(8) and show how one may proceed step by step to de-

termine the characteristic impedances 2; which will

result in the required power loss ratio. The numerical

work is carried through most conveniently with the

impedance matrices of the form of (2). Proof of physical

realizability in terms of positive characteristic imped-

ances will require the use of the synthesis theorem.

Along the way, we shall prove Collin’s conjecture

that Z~Zn+l–~ = R and derive closed expressions for the

u’s of (5) in terms of the Zi’s, and, conversely, express

the 2,’s explicitly in terms of the a’s and c’s of (2).

SOLUTION OF PROBLEM

Now

1
PL =

1–]1’12

where 11712 is the square of the magnitude of the input

reflection coefficient. Thus

Irlz=
Qn2(cos f))

1 + Qn2(cos 0) “ (9)

When COS2 8 is replaced in (9) by P2/P2 – 1, condition 19

of the basic theorem, plus the requirement that 1? have

the proper value at infinite frequency, yields a unique

determination for r. Consider r = Z – 1/2+ 1. Since Z

is to be PY, I J7I s 1 for all values of @ in the right half

plane. In particular, r can have no poles in the right

half plane. Consider the zeros of 1 +Qh2(cos 0). We

need be concerned only with the n zeros of the expres-

sion as a function of COS9 0. Now pz = COS2 0/(cos2 b’– 1).

Thus to each COS2 6 root there exist two p roots differing

in argument by 180°. Of these, one must fall in the left

half plane except for the possibility that the two roots

are imaginary. This is contrary to our choice of the

power loss ratio, because it implies actual frequencies at

which the power loss ratio is zero. Thus we select the

n P-roots which fall in the left half plane, and use them

to construct the denominator of I’. When p is replaced

by –j cos O/sin 8, it will be found that

CYQ,JCOS0)
r= . (10)

Cos”o+ .. .+jsin6(cos’-1 fl +...)

The value of the complex constant a is uniquely deter-

mined from the requirement that

R–1
r= —for cos O = 1.

R+l

If I’ is written in P form the same determination can be

made by putting @= ~. Having constructed r, the in-

put impedance Z is immediately determined from the

g For a discussion of the consequences of this assumption, the
reader is referred to E. A. Guillemin, “The Mathematics of Circuit
Analysis, ” John Wiley and Sons, Inc., New York, N. Y., 1949. See
ch. 6, arts. 26–27.
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equation

l+r
z=—

l–r’
(11)

We must show that our construction of I’, to avoid poles

in the right half plane, yields a function which satisfies

the p? condition of the theorem. Now, since I’ is analytic

in the right half plane, according to the maximum

modulus theorem, the maximum absolute value which

it can achieve in the right half plane is attained on the

imaginary axis. By construction, however, its value here

is given by (9) and thus I I’ I <1 for all values of P in the

right half plane. From (1) the real part of Z is readily

found to be (1–II’ 2)1 I–rl 2 and thus Z is PY.

It re?.nains to show that the Z so constructed must

satisfy condition 2 of the synthesis theorem. If the Cosz 0

in (9) i:s replaced by P2/Pz — 1, I r I z can be written

(12)

Now the Z obtained from (10) may be written in the

form

z = w’z](p) + ?Zl(p)

??’@) + ?22(p)
(13)

where ml and mz are even or odd and nl and nz are odd or

even. Since Z is positive real, it is well knownl” that all

the coefficients appearing in Z are of the same sign, and

the degree of the numerator and denominator differ at

most by unity. From (13), r becomes

‘w] — m2 + (}21 — 7?2)
r= (14)

ml + ‘HZ2+ (% + Z2)

Now since p = –j cos O/sin 6, II’ ‘is

The difference between the denominator and numerator

of this fraction is 4m1 (P)?%(p) — 4nl (p)n~(p). Comparing

this with (12) we see that

Thus condition 2 is satisfied by our construction. It is

also readily argued that the numerator and denominator

of (13) must be of the same degree.

Once Z is known, the first unknown characteristic

impedance is readily determined by subjecting Z to the

transformation inverse to (4) with 2. selected to have

the value of Z for P = 1, so that the degree of the result-

ing impedance function is one less than the degree of Z.

This procedure can then be repeated, and the synthesis

theorem assures us that all of the characteristic im-

pedances so found are real, positive numbers,

10Ibid., pp. 396–411.

For the purpose of numerical computation, it appears

to be a little more convenient to use the impedance

matrix in the form of (2) which is obtained by sutJsti-

tuting (10) in (11). The load resistance R and proper

multiplicative constant for the numerator and denomi-

nator are obtained from the condition that (2) must re-

duce to the unit matrix for cos O =1. If we multiply (2),

either on the left or the right, by the inverse of (1)

Cos $ –j sin OZ.’

–j sin 0 Cos o

z. -

the characteristic impedance, of either the first or last

sections of the transformer may be determined from the

condition that the resulting matrix must have elements

whose degrees in cos O are reduced by one.

SPECIAL RESULTS

We are now in a position to prove Collin’s conjecture

that, for power loss ratios of the form

P. = 1 + Qn’(cos .9)

the impedances Zi will satisfy the relationship

ZiZ.+l–f = R. Since the numerator of II? I 2 is a perfect

square, involving only cos 0, [see (9)], ~ has the form of

(10). Since I’ is real for cos 6’= 1, a must be real. Conse-

quently the input impedance has the form

.-1 + j sin OB
z=

D+jsin OC

with C = B. Thus the impedance matrix has the form

(

.4/R j sin OB

)
(15)

j sin 8B/R D “

The important point is that the matrix is symmetric,

except for the factor R, and this is the necessary and

sufficient condition for the result. Consider

( Cos 0

!
–j sin 13Z1

sin 6
–j _zT Cos 0

A/R j sin 6’B’

j sin 013/R D

Cos 0 –j sin OZ.’

. sin f) . (16)

–.1 — Cos !9
z.

If one considers the term in the first row and column of

the left hand product, 21 must be chosen so that the co-

efficient of the highest power of cos O vanishes. Thuls ZI

is equal to the ratio of the highest coefficient of A divided

by the leading coefficient in B. Thus ZI =R/Z., if one

applies the same argument to the right hand product.

If one evaluates the diagonal elements in the triple

product, it is found that they have the same type of

symmetry as is shown in (’15), Thus the same arguments
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may be repeated with the general consequence that

Z%Z%+l–i = R.
It should be observed that, if one assumes symmetry

about the other diagonal so that A = D, one is led to

insertion loss functions of the form

PL = 1 + sin’ 6Q,,_12(cos 0)

and one has end-for-end symmetry of the characteristic

impedances, and the other properties of a band-pass

filter.

We conclude the general discussion of the problem by

exhibiting the hi-rational relationships between the co-

efficients in the impedance function, and the character-

istic impedances. Consider the elementary symmetric

functions a, of the n characteristic impedances

z,, ..., Z., defined by the sums

(Tt=~z,... zk

where summation is taken over all combinations of the

n characteristic impedances taken i at a time. It is

further assumed that the Z~’s in each term are ordered

so that the index of any Zt in a term is less than the

indices of all the Z~’s which follow it, in same term. This

is so-called lexicographical ordering. Then it may be

shown by induction that the a’s of (5) may be con-

structed from the U;’S as follows:

Ui’ is constructed from a~ by replacing alternate Z,’s,

starting with the second, in each term by the re-

ciprocal l/Z~.

Ui” is constructed as above except one starts with the

first Z; in each term.

For example for n =3, u,O = ZJZl +Z8/Zz +ZJZl and

lJ3” = zlz3/z2.

For the reverse of this procedure, it is convenient to

assume that the input impedance is known in the form

of the impedance matrix (2). One will find, in general,

that

where

@J?@-1=

1 0 1 0 . . . 1

ao — c1 o 0 . . . 0

a2 c1 — C3 a. —cl . . . o

az c1—C3. ..O
. . . .

. . . .

ai?k C2k+l — C2k–1 “ . . . 0

1 0 1 0 . . . 0

an — c1 o 0 . . . 0

a2 G1 —G3 a. —cl . . . .

. . . .

. . . .

. . . .

agk czk~l — 62Jt_~ . . . .–1]

and

1 0 1 0 . . . 1

c1 — a. o 0 . . . 0

f&+l — a2k . . . 0
~k-, =

P 0 1 O“’” 01”
c1 — ao o 0 ,.. .

63 — a2 c1 —ao~.. .
,.. .
. . . .

Czk+l — a2k . ..— 1

These determinations are obtained by extending the

idea shown in the left hand product of (16). The first im-

pedances Zl, . . . , zk are assumed known, and the

product of the corresponding inverse impedance trans-

formations is written in general form with the co-

efficients of the elements in the first row given the

general designations, Xl, . . . , Xk. When this inverse

matrix of degree k in cos O is multiplied by the given

impedance matrix, a matrix of degree k +n in cos O

results. All the coefficients of cos 6 in the first row and

column of this matrix must be zero, except the co-

efficient, ~k+l, of cos”–k 0, and the coefficients of lower

degree terms. If we treat ~h+l as an unknown, we find

that we have exactly k+ 1 linear equations for the de-

termination of k+ 1 unknowns, Xl, . . . , xk and ~k+~.

The use of Cramer’s rule yields cih+l in determinant

form. If the same procedure is applied to Yl, . . ., Yk,

the coefficients in the 2nd row of the inverse determi-

nant, then flk+l, the highest nonzero coefficient of the

lower left hand corner element of the product matrix,

can also be determined. The value of Z~+l follows im-

mediately.

NUMERICAL EXAMPLE

As an illustrative example, consider the problem of

designing a transformer from characteristic impedance

unity to characteristic impedance 0.440 in waveguide

having a cutoff wavelength of 5.680 inches, subject to

the requirement that vswr S 1.05 from 2600–3600 mc.

It is readily determined that this requires that P&
shall have 3 roots in the pass band, and we select an

insertion loss function of the form

[1
Cos o

PL = ~ + k2T32 —
s

with O = 27rl/hQ. If 1 is to be chosen so that cos O= O at

the center~of the band and of equal magnitude at the

ends of the band

h,, Agz
1=

z(h, + ~~,)



Y957 Riblet: General Synthesis of Quarter-Wave Impedance Transformers 41

where ji~l and AQ2are the extreme guide wavelengths. s is

chosen by the requirement that the argument of

Ts(cos 8/s) shall be unity at the ends of the band, and

is found to be numerically equal to 0.464. k is determined

by the requirement that, at infinite frequency, the

transformer shrinks to zero length and PL is that result-

ing from the terminating impedance R. In general

(R+ 1)2
= 1 + k’T3’(1/s)

4R

and in our example kz = 1.5777 X 10–4. Now

P.–1
pi’=

PL

()

Cos9
k2Ta2 ~

--
0.2.53COS6O – 0.0817 COS46 + 0.00659 COS2~ + 1 e

If, in the denominator, we make the substitution

P = –j cos O/sin 0, its p roots are found to be

f, = * (1.034+ jo.351)

f, = & 0.772

P3 = + (1.034 – jo.351),

If we select those roots lying in the left half plane, the

denominator of I’, except for a multiplicative constant,

is P3+2.841P2 +2.790 P+0.921. We may then write

akT3(cos0/s)(f2 — 1)3/z
r=

#3 + 2.841P2 + 2.7907 + 0.921 “

The multiplicative constant a is chosen by the re-

quirement that I’ =R– l/R – 1 when cos 6 = 1 and

P = @. Then I’ may be written

except for a multiplicative factor in each term. NOW RL

and the multiplicative factor are uniquely determined

by the condition that the impedance matrix must reduce

to the unit matrix for cos O=1. Thus the impedance

matrix becomes

[

cos 0(5.442 COS26–4.442) j sin 6(2.710 COS20–0.664)

1j sin 0(6.154 COS219– 1.507) cos 0(3.064 COS26–2.064) “

If this is multiplied on the left by the inverse of (1)

f Cos e

I
–jsin 021}

–j sin@
Cos o

ZI

4 equivalent conditions result that the powers of cos 6

occurring in the result will be at most of second degree.

For the coefficient of COS4 O appearing in the upper left

hand element, one obtains the coefficient 5.442 – 6. 1!5421,

so that 21 = 0.884. When this transformer element is

removed, the impedance matrix for the balance of the

transformer is

(

2.34 COS2O – 1.335 j sin 0(1.17 cos 0)

j sin 0(3.52 cos 0) )1,74 COS2o –. 0.749 “

The next step yields 22= 0.668 and a remaining trans-

former having an impedance matrix

(

0.998 COS6 – 0.498j sin O

2.Olj sin O 1.02 Cos e )

corresponding to an impedance of 0.495. The last step

will result in the unit matrix and provides a check on

the accuracy of the numerical calculations.

0.921 cos 6(0.503 COS’O – 0.0812)
r

and the input impedance is

z=

——
cos 0(–3.790 COS219+ 2.790) – j sin %(3.762 COSTO+ 0.921)

cos 13(-3.327 COS2$+ 2.716) + j sin O(–3.762 COS213+ 0.921)

cos 0(–4.254COS26 + 2.865) + j sin 0(–3.762 COS2O+ 0.921)

The fact that the imaginary parts of the numerator and

denominator of Z are equal assures us of a transformer

having symmetrical reflection coefficients as previously

proven. The impedance matrix giving rise to this input

impedance can be written

‘ C05 o (–3.327 COS2O + 2.716) )
—.

RL j sin 0(–3.762 COS20 + 0.921)

j sin 6 (–3.762 COS219+ 0.921)
—.

RL COS 6(–4.254 COS2O + 2.865),

CONCLUSION

A general solution of the synthesis of equal length

impedance transformers with given insertion loss func-

tion has been obtained. It shows that optimum Tcheby-

cheff characteristics can be physically realized and are

true optimums for quarter wavelength transformers.

Collin’s conjecture regarding the symmetry of the

optimum transformer is proved and closecl expressions

are given for the hi-rational transformations relating

the characteristic impedances to the coefficients oc-

curring in the impedance functions. Finally it is shown
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that the determination of the characteristic impedances

for Tchebycheff or maximally flat performance involves

at most the solution of quadratic equations.

APPENDIX

We wish to prove that a rational function of p with

real coefficients, of degree n, in numerator and denomi-

nator written

(20)

with vnl and mz either even or odd and then nl and n2 odd

or even is the impedance function of a cascade of equal-

length impedance transformers terminated in a re-

sistance if 1) Z is positive real; and 2)

7nl(p)f?’z2(p) — ?’zl(p)72Jp) = c(# — 1)”.

This will have been shown, if we can demonstrate the

existence of a positive real number Z. such that the

transformation, inverse to (4),

Z=z @z–z.
c

–z + pz.
(21)

when applied to (2o), results in a rational function of

one lower degree, with real coefficients for which con-

ditions (1) and (2) are again satisfied. Repetition of this

procedure must result in an impedance function which

is a positive constant; and, at this point, the synthesis

is complete.

Now the general possibility of this reduction is the

result of the theorem of Richards previously referred to,

with the addition of condition (2). What is required by

Richards is that 2( – 1) = –Z(l). For the reactance

functions considered by Richards, this is almost trivially

true at each stage of the synthesis, and is readily de-

rived from condition (2) for the case of resistive termina-

tions as follows

z(1) =
??21(1) + 721(1)

?7’22(1)+ ?22(1)

but from 2, WI(l) mz(l) =nl(l)n,(l). Therefore

ml(—l) ml(l) ?21(1) 121(—1)
— =?’

nz(-1) = 722(1) = mz(l) = — m.2(-1)

since ni(p) /mi(P) is certainly odd. Thus

z(1) = ?’ = –z(–l).

We may now prove, after Richards, that, if we select

Z. to have the value of Z at P = 1, Z’ will be of one less

degree in P and be positive real. In the first place, the

numerator of Z’ vanishes for @ = 1 and hence contains

P = ~ as a factor. It also vanishes for p = – 1, since

2(1) = –2( – 1), and so contains a factor p’ – 1. The

same statements are true for the denominator of Z’, and

thus it too contains a factor fi2 — 1 which may be can-

celled out with the same factor in the numerator. Thus

Z’ is a rational function of @ whose numerator and de-

nominator are of exactly one less degree than the

numerator and denominator of Z.

It is PI’. Consider the function (Z’ – 1)/(2’+ 1).

Clearly a necessary and sufficient condition that Z’ be

@r is that I (2–’1)/(2’+1) I =1 for the Re (p) >0. This

is apparent on consideration of the magnitude of the

vectors Z’ — 1 and 2’+1. Now

z’/z(l) – 1 z –z(1) p+ 1

F’/z(l)+l=z+z(l) p–l”
(22)

In the first place, the function on the left is analytic in

the right half plane, since Z is known to be P? so that

the only zero of the denominator of (22) must occur at

@= 1 where it is cancelled out by a corresponding Zero

in Z —Z(l). Now it is well known (maximum modulus

theorem again) that an analytic function assumes the

maximum value for its absolute values on the boundary

of its region of analyticity. Thus the absolute value of

(22) in the right half plane is less than or equal to the

minimulm absolute value assumed by it on the imaginary

axis. Here (p+ 1)/(@ — 1) I = 1. Moreover since Z is as-

sumed PY, [z–z(l)]/[Z+Z(l)]l sl. Thus

2’/2(1) – 1 z–z(1) p+l
—=1

z’/z(l) + 1 s Z+z(l) “p–l

on the imaginary and hence everywhere in the right half “

plane. Accordingly 2’/2(1) is +Y, and then so is Z’ since

Z(1) is positive.

The proof of the synthesis theorem will be completed

when we argue that for Z’ written in the form

(ml’(t) + n~’(p))/(m2’(1) + !22’(P)),

ml’(~)mz’(~) — ftl’(@)n2’(~) = C(@2 — l)~-l.

Consideration of the inverse transformation (22) shows

that the corresponding impedance matrix has the de-

terminant, P2 — 1, just as the transformation (4). Before

any cancellation then

ml’(p) mz’(p) — nl’($)nz’(j) = C(P2 — 1) “+l.

When Z.~Z(l), Richards’ theorem shows that a term

&– 1 factors from both numerator and denominator.

Actually P2 – 1 must factor from both even and odd

parts of numerator and denominator, and when this is

done the result follows.

DISCUSSION

H. Seidel in a doctoral dissertation dated May, 1954

has shown that an exact synthesis can be carried
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through, starting from an insertion loss function of

allowed form. His procedure parallels that used in our

numerical example. He does not introduce a complex

variable equivalent to p, however, and thus does not

have Richards’ theorem available for proving physical

realizability. In particular, he makes no point of the

second condition for the physical realizability of an im-

pedance function. Ozaki and Ishii,ll clearly state this

second condition, but they do not parallel Darlington

11H. Ozaki and J. Ishii, “Synthesis of transrnissiomline net-
works and the design of uhf filters, ” IRE TRANS., vol. CT-2, p. 325-
336; December, 1955.

by starting from a given insertion loss function. E.M.T.

Jones in the 1956 IRE CONVENTION RECORD uses aLcom-

plex variable, but he makes no mention of the second

condition for physical realizability, and appears, in his

proof of physical realizability, to have appealed to

Richards for a theorem which Richards did not prove.
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An Analysis of the Diode Mixer Consisting of Nonlinear

Capacitance and Conductance and Ohmic Spreading

Resistance*
ALAN C. MACPHERSON~

Sunwnary—A method is presented for calculating the mixer ad-

mittance matrix Y’ which results when an ohdc impedance is con-

nected in series with a diode mixer described by an admittance

matrix i’. There are no restrictions on the frequency dependence of

the ohmic impedance nor on the number of harmonic sidebands con-

sidered. The equations are worked out in detail for the “low Q>>

case in which signal, image, and intermediate frequencies are con-

sidered, and it is shown that Y’ in this case is “nearly low Q.$> As a

result of this analysis the usual criterion for good high-frequency

mixing, i.e., that the product of the spreading resistance and the

barrier capacitance be small compared with unity, is criticized and a

new figure of merit is proposed.

Explicit formulas have been derived for calculating the elements

of Y’ when Y represents the parallel combination of a nonlinear con-

ductance and capacitance. In general, these formulas are cumber-

some, but three special cases have been considered in detail.

Case I: Zero spres ding resistance and equal admittances con-

nected to image and signal terminals. Results: a) The conversion

gain is independent of the contact area. b) Regions of negative IF

conductance are always associated with arbitrarily high gain.

Case 2: High-frequency, small spreading resistance, image

shorted across nonlinear conductance and capacitance. Results:

a) The conversion 10SS and the IF admittance can be given by closed

equations. b) The IF conductance can be negative. c) Regions of

negative IF conductance are bounded by regions of arbitrarily small

IF conductance. d) The conversion loss can decrease with increasing

frequency. e) Low conversion loss is accompanied by narrow band-

width.

Case 3: The spreading resistance is zero and the image is shorted,

Results: a) Above a certain frequency negative IF conductance is

obtained and arbitrarily low conversion loss is possible. b) The

situation is quite similar to that of Case 1.

* Manuscript recei~,ed by the PGMTT, May 18, 1956.
t Naval Research Lab., Washington, D C.

Measurements of mixer performance at the “available terminals”

are discussed and the failure of the 1‘phenomenological theory of

mixing>) as a basis for making such measurement ts is emphasized.

INTRODUCTION

T

HIS PAPER will be concerned principally with

the mixing properties of the circuit of Fig. 1 (next

page), where arrows indicate that g and C are func-

tions of the voltage across them, Frequent reference will

be made to Torrey and Whitrnerl and whenever possible

the notation used therein will be followed here.

The circuit of Fig. 1 has been widely used, qualita-

tively at least, as an equivalent circuit for point-

contact crystal diodes, z particular y for microwave ‘work

in which the capacitor is of importance. The part c)f the

crystal diode that Fig. 1 is supposed to represent is

shown in Fig. 2. The terminals are at the dotted lines

AA’ and BB’. The distance from the line AA’ tc~ the

surface is a small fraction of the shortest wavelength in-

volved, while the line Bl?’ is located so as to include

nearly all of the spreading resistance. It can be shown

that the latter requirement will be fulfilled if BB’ is
several times the contact diameter away from the con-

tact region.

The validity of the circuit of Fig. 1 as a representation

of Fig. 2 is open to question. It has been verified in the

1 H. C. Torrey and C. A. Whitmer, “Crystal Rectifiers, ” McCkaw-
Hill Book Co., Inc., ??ew York, N. Y.; 1948.

2 Ibid., p. 24.


